应用数学的研究分支:
1)计算数学 (Computational Mathematics)
计算数学是伴随着计算机的出现而迅猛发展起来的新学科,涉及计算物理、计算化学、计算力学、计算材料学、环境科学、地球科学、金融保险等众多交叉学科。它运用现代数学理论与方法解决各类科学与工程问题,分析和提高计算的可靠性、有效性和精确性,研究各类数值软件的开发技术。
专业背景:要求考生具备基础数学、应用数学、信息技术、计算机科学、数据处理和系统分析,工程学、以及数字图像等学科知识。
研究方向:工程问题数值方法、发展方程与动力系统的数值方法、数值逼近与数字图像处
理、计算机图形学与计算机软件、光学与电磁学中的数学问题等。
2) 统计学 (Statistics)
统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化分析、总结,做出推断和预测,为相关决策提供依据和参考。它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。随着数字化的进程不断加快,人们越来越多地希望能够从大量的数据中总结出一些经验规律从而为后面的决策提供一些依据。统计学专业不是仅仅像其表面的文字表示,只是统计数字,而是包含了调查、收集、分析、预测等。应用的范围十分广泛)。
3) 概率论 (Probability Theory)
概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。
4) 数理统计
数理统计是以概率论为基础,研究社会和自然界中大量随机现象数量变化基本规律的一种方法。它以随机现象的观察试验取得资料作为出发点,以概率论为理论基础来研究随机现象。根据资料为随机现象选择数学模型,且利用数学资料来验证数学模型是否合适,在合适的基础上再研究它的特点、性质和规律性。数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的由集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议。
数理统计的主要内容有:参数估计,假设检验,相关分析,试验设计,非参数统计,过程统计,抽样理论,假设检验,方差分析,相关回归分析,统计推断,贝叶斯统计,试验设计,多元分析,统计判决理论,时间序列分析等。
5) 金融数学
金融数学又称分析金融学、数理金融学、数学金融学,是20世纪80年代末、90年代初兴起的数学与金融学的交叉学科。金融数学主要运用现代数学理论和方法(如:随机分析、随机最优控制、组合分析、非线性分析、多元统计分析、数学规划、现代计算方法等)对金融(除银行功能之外,还包括投资、债券、基金、股票、期货、期权等金融工具和市场)的理论和实践进行数量的分析研究。其核心问题是不确定条件下的最优投资策略的选择理论和资产的定价理论。套利,最优和均衡是其中三个主要概念。近二十几年来,金融数学不仅对金融工具的创新和对金融市场的有效运作产生直接的影响,而且对公司的投资决策和对研究开发项目的评估(如实物期权)以及在金融机构的风险管理中得到广泛应用。
6) 数学物理
数学物理以研究物理问题为目标的数学理论和数学方法。它探讨物理现象的数学模型,即寻求物理现象的数学描述,并对模型已确立的物理问题研究其数学解法,然后根据解答来诠释和预见物理现象,或者根据物理事实来修正原有模型。“数理”也叫“数学物理”,是数学和物理学的交叉领域,指应用特定的数学方法来研究物理学的某些部分。对应的数学方法也叫数学物理方法。
如有任何相关疑问,请进入答疑中心留言,会有留学顾问为您解答
如果您对自己是否适合出国留学还有疑虑?
欢迎参与前途出国免费评估,以便给您进行准确定位。在线咨询