Thermodynamics could be the future of computing, researchers say
加州大学圣地亚哥分校实践教授说,热力学可能是计算的未来
Todd Hylton, a professor of practice at UC San Diego, is the lead author on a report on thermodynamic computing released this month.
托德·海尔顿(Todd Hylton)是加州大学圣地亚哥分校(UC San Diego)的实践教授,是本月发布的热力学计算报告的主要作者。
在线咨询
San Diego, Calif., Nov. 18, 2019 -- Today, computing is hitting limits that are all related to thermodynamics. Energy consumption--a classic thermodynamic problem--is an issue. Small components in computers aren’t stable because of thermodynamic fluctuations. Code is becoming increasingly more difficult to organize.
加州圣迭戈,2019年11月18日——今天,计算正在达到与热力学相关的极限。能量消耗——一个经典的热力学问题——是一个问题。计算机中的小部件由于热力学波动而不稳定。代码越来越难以组织。
“It all goes back to thermodynamics,” said Todd Hylton, a professor of practice at the University of California San Diego and executive director of its Contextual Robotics Institute. “That’s where we should be looking for answers.”
加州大学圣地亚哥分校(University of California San Diego)的实践教授、上下文机器人研究所(Contextual Robotics Institute)执行主任托德·海尔顿(Todd Hyton)说:“这一切都要追溯到热力学。“这就是我们应该寻找答案的地方。”;
在线咨询
As Moore’s Law reaches its limits, thermodynamic computing might prove to be the future of the field, says a new report from an international team of 38 researchers led by Hylton, released Nov. 4.
11月4日,由海尔顿领导的一个由38名研究人员组成的国际研究小组发表了一份新的报告,称随着摩尔定律达到极限,热力学计算可能成为该领域的未来。
“If we want to make computers function more efficiently then we should care about energy and its ability to efficiently create state changes — i.e. we should care about thermodynamics,” the researchers write.
研究人员写道:“如果我们想让计算机更高效地工作,那么我们就应该关注能量及其有效创造状态变化的能力,也就是说,我们应该关注热力学。”。
After all, thermodynamics drives organization in the real world, so it should drive technology too, Hylton added. “Right now, we are fighting against thermodynamics in our technology.”
毕竟,热力学驱动着现实世界中的组织,所以它也应该驱动技术,海尔顿补充道。“现在,我们正在技术上与热力学作斗争。”;
在线咨询
What would a thermodynamic computer look like? An “engineered, multi-scale, complex system that, when exposed to external potentials (inputs), spontaneously transitions between states in the short term while refining its organization in the long term, both as part of an inherent, adaptive process driven by thermodynamics,” the researchers write.
热力学计算机是什么样子的?研究人员写道,这是一个“工程化、多尺度、复杂的系统,当暴露在外部电位(输入)下时,在短期内自发地在状态之间转换,同时在长期内完善其组织结构,两者都是热力学驱动的固有、适应性过程的一部分。”。
Such a system could make computing much more efficient and cheaper, lowering the environmental impact of computing systems. In the long term, it could enable “understanding of the organization and computational power of living systems, potentially including the spontaneous emergence of ‘intelligence’,” researchers write, as well as “a very large increase in the capabilities of small, low-cost, computing systems, such as perceptual capabilities that rival those of animal sensory systems.” In the short term, findings could be applied to improve machine learning.
这样的系统可以使计算更加高效和便宜,降低计算系统对环境的影响。研究人员写道,从长远来看,它可以“理解生活系统的组织和计算能力,可能包括自发出现的‘智能’”,以及“小型、低成本、计算系统的能力大幅提高,例如可以与动物感觉系统相媲美的感知能力。”短期内,研究结果可以应用于改进机器学习。
The report calls for:
报告呼吁:
Core research to better understand thermodynamics in the context of computing Building simulations and proof of concept systems to show what thermodynamic computing might look like Research on the foundational components of thermodynamic computing
核心研究,以更好地理解热力学的背景下,计算建筑模拟和概念系统的证明,以显示热力学计算可能看起来像热力学基础计算的组成部分的研究
“The whole universe organizes itself but our technology does not,” Hylton said. “Thermodynamics drives organization in the real world. So it should drive technology too.”
“整个宇宙都有自己的组织,但我们的技术却没有,”海尔顿说。“热力学驱动着现实世界中的组织。因此,它也应该推动技术发展。”;
如需进一步了解,或有任何相关疑问,欢迎在线咨询留学专家。如果您对自己是否适合留学还有疑虑,欢迎参与前途出国免费评估,以便给您进行准确定位
