录取案例之哥伦比亚大学
背景介绍
申请难点
留学规划与提升
1、申请经历:
因为学生海本背景,并且有一段前途推荐的中金IDB实习背景以及NYU知名量化估值教授的科研。这两段经验在定校上放大了选校空间,中后期定校选择了Columbia,CORNELL,UPENN,UCB,NWU.USC,DUKE。 最后该学生成功圆梦纽约。对毕业后就业铺垫好了道路。
2、专业介绍(科普)
数据科学是一门涉及到统计,数据分析及其相关方法的科学,借用数据去“理解和分析实际现象”。数据科学使用到数学、统计、信息科学和计算机科学等各个学科的技术和理论,特别是以下分支:机器学习, 分类, 聚类分析,数据挖掘,数据库和可视化。大多数院校的Data Science属于STEM学科。
统计学和数据科学这两个专业都要求一定的数学和计算机能力。部分DS专业开设在统计或者数学系下面。但是两个专业也有一定区别。
先修课:统计专业要求学过除了线性代数、微积分、概率论等等基础课外,还要求掌握统计的高阶课程,比如回归分析、多元统计、时间序列等。而数据科学对计算机背景和技能要求更高,同时要有数学背景,先修课程包括计算机导论,SQL数据库,C++等,数学要求微积分、数学建模、线性代数、概率论等等以及最好有一定工作经验。
从申请角度,统计学大多有自己独立的院系,而DS多数没有,多数在工学院或计算机学院,少数在统计学院。从深入学习角度,统计学比较偏科研,也设有博士学位;而DS则应用导向,如果要读博士一般转到CS。
从就业上差别也不小,统计学家侧重统计和分析数据,进行统计推断。研究重点是对统计方法进行研究和改良,用在计算机建模之后对数据进行描述和解释。而数据科学家则是通过科学的方法,用数据挖掘工具寻找新的数据。数据科学家要求掌握数据库、软件开发等等,对于程序语言R, Python、C++,SQL和Hadoop等都要了解,对技能要求更综合。
数据科学项目主要是面向职业培训、侧重工业界需求,所以设置博士学位的学校比较少。为了符合工业界需求,专门的数据科学项目课程都很实际,侧重培养学生分析数据、解决问题的实际动手能力,课程一般不涉及理论知识。如果要读博士,申请统计和生物统计专业最对口,其次是计算机或者电子工程做机器学习数据挖掘这些相关方向的。另外数学、IEOR、经济等专业也有少数博士生做的方向可以转到数据科学上。