1.3.2 应用数学(Applied Mathematics )
概念:
应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其他范畴(尤其是科学)的数学分枝。部分学校作为数学系单独的研究方向。
应用数学的发展是以科学为依据,将纯数学中的结论扩展到其他科学中。应用数学包含的分支有:概率与统计、计算数学、物理数学,经济和金融数学、运筹优化、控制论等。更具体的来 说,它包括微分方程、向量分析、矩阵、拉普拉斯变换、傅里叶变换、复变分析、数值方法、概率论、数理统计、运筹学、博弈论、控制理论、组合数学、信息论等许多数学分支,也包括从各种应用领域中提出的数学问题的研究。应用数学涉及的领域很广泛,基本在现在的科学和工程各个领域都在 extensively & intensively 应用。
Wiki 中的简介:“图论应用在网络分析,拓扑学在电路分析上的应用,群论在结晶学上的应用,微分几何在规范场上的应用,自动控制理论在计算上的应用,黎曼几何应用于相对论,数理逻辑应用于计算机,最小二乘法应用于飞机起降时自动控制,利用数字合成计算机辅助的X 射线断层成像技术(1979 年数学家获得诺贝尔医学奖)。数论应用在密码学,博弈论、概率论、统计学应用在经济学,线性规划用于生产安排调度,都可见数学在不同范畴的应用。”
最常见的应用包括两个大的方向:一是计算机,随着计算机的飞速发展,需要一大批懂数学的软件工程师做相应的数据库的开发;二是经济学,现在的经济学有很多都需要用非常专业的数学进行分析,应用数学有很多相关课程本身设计就是以经济学实例为基础的。应用数学与纯数学最大的区别就是与实际的结合:设法解决自然现象与社会发展提出的数学问题,并将其探讨结果应用回到自然界与社会中去。